• Text size      
  • Send this article to a friend
  • Print this article

All systems go for Scotland's space industry

Move over, Sandra Bullock, there is something super-fast coming your way.

It is a tiny ­satellite - the size of a bag of supermarket sugar - and its camera lens is trained on a field in Aberdeenshire from 600km up in space. Here this miniaturised miracle relays back realtime information about the growing shoots of barley which the Scottish whisky industry is watching with interest.

This is just one example of myriad new business uses of satellite technology as Scotland's commercial space industry is all systems go. The micro-satellite industry - or cube satellite - is set to revolutionise farming, offshore renewables, forestry, weather forecasting, city traffic control, and even entertainment such as local advertising and television. Moreover, Glasgow, by good fortune rather than grand design, has become one of the hotspots for this exciting new industry.

The use of global navigation satellite systems in agriculture will help local farmers measure their yields and development, aiding food security, inspection and traceability, while infra-red sensors can monitor greenhouse gases or pollution in cities.

A Glasgow project monitoring wind farm locations from space and using smart software to extrapolate average wind speeds is expected to save millions on the installation of meteorology masts.

For decades, the military and defence industries of the major powers, such as the United States, Russia, and China, have been resistant to entrepreneurial organisations having easy access to space. The first satellites were for defence and reconnaissance, before the boom in telecommunications, Sky television and smart phones. Scientific research in space has taken a large share of payload for experimentation but this has been diminishing.

The deployment of an Inmarsat satellite in the hunt to find the missing Malaysian Airline's Boeing 777 jet has recently highlighted the growing significance of satellites. Inmarsat, which has 10 satellites in orbits of 22,000 miles, is a large-scale satellite operation that has been used for merchant ship communication.

With rocket launches at £400 million per blast-off, the expense has put this beyond any medium-sized business. Until now.

"The conventional wisdom was because of the expense, satellites had to be multi-operational and very reliable with the ability to survive in this hostile environment where solar radiation can damage fragile components," says Professor Colin McInnes of the Strathclyde Space Institute. "What is happening in Scotland is turning this business model on its head. Companies such as Clyde Space are leading this revolution."

Industry figures say 52% of all new satellite projects are expected to be purely for commercial purposes. Whether mini-satellites can find lost sheep on the mountainside remains an unanswered question, but the miniaturisation of components and realtime applications will make Google Earth seem positively prehistoric.

"The wonder of micro-satellites is that they can be placed in geostationary position - about 600km in space - above a specific area or land mass and stream live information," says Corentin Guillo, head of missions for Catapult Satellite Applications, based in Harwell, Oxfordshire.

Much of Glasgow's lead in CubeSats is down to the serendipitous arrival of Craig Clark of Clyde Space, who founded his company at the West of Scotland Science Park nine years ago. Many industry insiders consider the return of Clark, a Glaswegian power systems engineer at Surrey Satellite Technology, who worked on over 25 space missions, as a watershed.

"Craig has been at the forefront of this new space technology," says McInnes. "He arrived back in Glasgow from SST in Guildford in 2005, and we've been fortunate to have him in Scotland. We worked with Clyde Space with its UKube-1 project."

Clyde Space is privately owned and has investment from Nevis Capital and Coralinn Private Equity, two Scottish private equity companies. Last week, Clyde Space announced new orders worth hundreds of thousands of pounds with the United States Air Force and the Belgian Institute for Space Aeronomy. Hardly entrepreneurial private customers but the orders for Clyde Space's solar panels and reaction wheels help towards the launch of Scotland's first satellite scheduled for June 19 at Baikonur Cosmodrome in Kazakhstan onboard a Russian Soyuz-5 rocket. There are fingers crossed in Scotland that Russia's political machinations in the Ukraine do not halt this launch. The company has orders of £3 million, 95% outside the UK.

There are four industry definitions for satellites under 500kg: a small satellite is between 100-550kg; a micro-satellite between 10-100kg; a nano-satellite is 1-10kg; and a pico-satellite is less than 1kg. Companies include Surrey Satellite Technology, which has made a 300kg SSTL33-51 for DMC-3 Constellation, while Skybox Imagining has a 120kg satellite and Planet Labs a CubeSat 3U, which is 3kg.

The CubeSat's typical dimensions are 10cm, 10cm, by 34cm, the size of a large tea packet, and its houses a layer of slim, wafer circuit boards with micro-components, power and battery system, and with tiny solar panels wrapped around the body. The panels and the antennae open up once they have been ejected from the spacecraft.

"Clyde Space was one of the first companies to recognised the enormous potential of the CubeSat," says Clark. "We're experienced in developing spacecraft systems which we've used to develop the CubeSat."

Lower costs now make this accessible to SMEs. Universities and research institutes have paid £30,000 to £120,000 for a launch, with another £80,000 for a unit. The mission order from the Belgians is worth £250,000.

In some cases, piggyback launches have been offered free to CubeSats by space launch vehicle operators and space agencies, which is stimulating the market, suggests Clark.

Under the SCOTSAT development programme, Clyde Space and Strathclyde University, which has an inter-departmental expertise in physics, engineering and propulsion, have been working together to commercialise the CubeSat multi-mission platform to create more opportunities.

Guillo explains that Satellite Applications Catapult emerged from the International Space Innovation Centre. The industry is being supported by the UK Government, industry and academics.

In March, it announced three new centres of excellence, comprising Business Durham, University of Strathclyde and a consortium comprising University of Leicester, University of Nottingham and British Geological Survey. Each centre is being tasked with enabling the development of space solutions for large industry and SMEs.

"We are supporting many more small satellite missions because there is a higher-risk appetite and an unprecedented demand for space data and applications," says Guillo.

The reduced launch costs, miniaturisation of technology and standardisation is undoubtedly bringing the opportunities of space within the reach of ambitious start-ups.

Guillo, who worked on the major Copernicus space project which has been observing the Earth, moved specifically to the UK because he was excited by the development of micro-satellites and their wider applications in the UK.

He says: "We are simply in the process of responding to the commercial market to enable the emerging generation of space entrepreneurs. We are encouraging commercial applications. With standardisation, the miniaturisation of technology and the dramatically lower costs, it enables risk-taking by innovators. The lower costs means that micro and nano satellites can be the testbed for new technologies.

"We estimate that between 2000 and 2750 nano/microsatellites will be required from now until 2020," says Guillo.

He admits the positioning of this tiny craft has to be perfectly aligned in space to ensure the exact resolution.

"But because the costs are substantially lower, you can replace the satellites after six months if you need to improve them."

McInnes, meanwhile, says that Glasgow is focusing on helping with commerical opportunities in energy and future cities.

At Strathclyde, two projects are under way, the first being the offshore wind measurement work, while the other is using GPS-positioning and the accuracy of the atomic clock to measure the 50hz electrical phasing of the National Grid.

"We can measure output fluctuations from space that will prevent brown-outs on the electricity grids," McInnes points out.

Catapult is also working to develop and enhance the supply chain and bring down costs. For example, Guillo says that specialist insurance companies now understand the risks involved with commercial space and premiums are coming down.

McInnes believes there are still applications for the CubeSat that have still not been imagined. "This is about the democratisation of satellites. And Glasgow is in the vanguard of this space technology - and why the hell not!"

Meantime, Edinburgh University's GeoScience department is running a four-day introductory course in radar remote sensing from April 21, and there is a CubeSat weekend on April 26 at the Satellite Applications Catapult base in Oxfordshire. The University of Strathclyde will be holding its own events and workshops in Glasgow.

2014 is a momentous year for Scotland; perhaps it will also be remembered for its first CubeSat launch which blasted off a new industry.

Contextual targeting label: 
Education

Commenting & Moderation

We moderate all comments on HeraldScotland on either a pre-moderated or post-moderated basis.
If you're a relatively new user then your comments will be reviewed before publication and if we know you well and trust you then your comments will be subject to moderation only if other users or the moderators believe you've broken the rules

Moderation is undertaken full-time 9am-6pm on weekdays, and on a part-time basis outwith those hours. Please be patient if your posts are not approved instantly.

226208